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Abstract
The efficient representation of quantitative information in probabilistic graph-

ical models (PGMs) is a challenge for complex models (i.e. problems with many
variables, high degree of dependence between them or many states per variable).
In this work, several alternative structures are introduced for facing this prob-
lem. All of them are guided by the values and are named Value-Based Potentials
(VBPs). VBPs try to take advantage of the regularity patterns founded in the
data (repetitions of values), regardless of how they appear. These new struc-
tures are compared with respect to standard tables or unidimensional arrays
representation (1DA) and probability trees (PTs). This last structure seeks for
reducing memory space. But this goal can only be achieved if there are context
specific independence patterns, that is, repeated values correspond to consecu-
tive indexes. VBPs structures try to overcome this limitation. The objective of
this work is to analyse the capabilities of these new ways of representation. For
this purpose, their features are studied from a theoretical point of view and are
employed for encoding quantitative information for a set of well known models.

1. Introduction

Probabilistic graphical models (PGMs) [1] are efficient representations for
problems under uncertainty. PGMs encode joint probability or utility distribu-
tions and are defined by two parts: first, a qualitative component in the form of a
graph that encodes a set of dependencies among the variables (i.e., nodes) in the
domain being modelled; secondly, a quantitative component consisting of a set of
functions quantifying such dependencies. In PGMs over discrete domains, such
as Bayesian networks (BN) [2, 3] or influence diagrams [4, 5], these functions
are traditionally represented with tables or unidimensional arrays (marginal or
conditional probability tables and utility tables, 1DA in general).

The sizes of 1DAs increase exponentially with the number of variables in
their domains. This property may limit the ability to represent certain prob-
lems with large 1DAs (memory size requirements may be prohibitive). Moreover,
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even if the model can be encoded with 1DAs problems may arise during their
evaluation. In order to make inference these 1DAs are transformed for comput-
ing marginal or conditional probabilities for a certain variable, most probable
explanation [6, 7], decision tables in the case of influence diagrams, etc. Some
inference algorithms [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] use basic operations
on potentials: combination, restriction and marginalization. The first one com-
putes the product of two potentials ϕ1(X) and ϕ2(Y) producing as result a new
potential with higher dimension ϕ(X ∪ Y). In this way, 1DAs obtained as in-
termediate results can be so large that they exceed the memory capacity of the
computer. Anyway, this paper does not consider operations on potentials. It is
just a first step for analyzing the capabilities of VBPs for encoding quantitative
information. The definition of operations on these structures will be a subject
for future research.

Therefore, in order to deal with complex problems, it is essential to use ef-
ficient representations of the quantitative information of the model. Usually
1DAs encoding probabilities or utilities contain repeated values. For example,
some combinations of values are not allowed and are represented with 0’s. An
efficient representation should take advantage of all these repetitions in order
to reduce memory space. Moreover, a useful representation should offer the ca-
pability of being approximated with a trade-off between exactness and memory
space. These two features should allow to represent and applying inference algo-
rithms on complex problems that could not be solved if quantitative information
were represented with 1DAs.

The importance of this problem is evidenced by previous attempts to obtain
alternative structures to 1DAs. Two examples of alternative approaches are
normal and binary probability trees (PTs and BPTs) [18, 19, 20, 21, 22, 23,
24]. These structures can capture context specific independencies [18] and save
memory space when repeated values appear under certain circumstances. These
representations also have the capability of obtaining approximations through
pruning operation: assuming loss of information, some contiguous values can
be substituted by their average value in order to reduce memory space. There
are also previous work focused on improving the operations on potentials to
alleviate the computational cost when dealing with complex models [25].

In this work some new alternative representations are considered. They are
based on the properties of the values themselves and not on the contexts in
which they appear or the structure of the potential. That is why they have
been called value-based potentials (VBPs). The paper defines these structures,
making a theoretical analysis of their properties and showing concrete examples
of how they encode specific distributions of known and available Bayesian net-
works in the bnlearn package repository [26, 27] as well as other networks used
in inference competitions [28, 29]. As it was mentioned before, this paper does
not consider how to operate with VBPs in order to perform inference operations.
The paper analyzes several alternatives for VBPs and their capabilities for of-
fering competitive compact storage of quantitative information with respect to
1DAs and PTs.
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The structure of the paper is as follows: section 2 defines some basic con-
cepts and notation and some usual representations for potentials as arrays and
trees. Section 3 introduces basic concepts about memory requirement analysis.
Section 4 introduces VBPs representations. Section 5 analyzes VBPs alterna-
tives. Section 6 presents the empirical evaluation performed for testing VBPs
capabilities. Finally section 7 presents conclusions and lines for future research.

2. Basics

2.1. Definitions and notation
Let us first denote the basic notation. Upper-case roman letters will be used

to denote random variables and lower-case for their values (or states). Thus,
if Xi is a random variable, xi will denote a generic value of Xi. The finite
set of possible values of Xi is called domain and denoted ΩXi . For simplicity,
we will consider variable values as integers starting with 0 and hence possible
assignments will be X1 = 0, X1 = 1, X1 = 2, etc. The cardinality of a variable,
denoted |ΩXi

|, is the number of values in its domain. Similarly, we use bold-face
upper-case roman letters to denote sets of variables, e.g. X := {X1, X2, . . . XN}
is a set of N variables. The Cartesian product

∏
Xi∈X ΩXi is denoted by ΩX.

The elements of ΩX are called configurations of X and will be represented by
x := {X1 = x1, X2 = x2, . . . , XN = xN} or simply x := {x1, x2, . . . , xN} if the
variables are obvious from the context.

Formally, a PGM contains three elements ⟨X, P,G⟩ where X is the set of
variables in the problem with a joint probability distribution P (X) and G is
a graph that represents the dependence (and independence) relations between
the variables. A PGM allows to represent P , which is usually high-dimensional,
as a factorisation of lower dimensional local functions. For instance, in case
of BNs, these are conditional distributions represented as tables or conditional
probability tables (arrays in general, 1DAs). However, we will use the term
potential which is more general: a potential ϕ for X is a function of ΩX over
R+

0 . In other words, each configuration x ∈ ΩX is associated to a real value.
Thus, 1DAs or any other function encoding the quantitative information in
PGMs can be seen as representations of potentials.

Example 1. Let us consider the variables X1, X2 and X3 with 2, 3 and 2 states
respectively. Then ϕ(X1, X2, X3) is a potential defined on such variables with
the values shown in Figure 1. Note that this potential is also the conditional
distribution P (X3|X1, X2).

The definition of structures for representing potentials requires the introduc-
tion of the following concept: index of a configuration. It is a unique numeric
identifier representing each configuration in a given domain |ΩX|. We will con-
sider indexes starting with 0 (all the variables take their first value) and ending
with |ΩX| − 1. In the potential given in Figure 1, the index 0 is associated
to {0, 0, 0}, the index 1 to {0, 0, 1} and so on until the last one 11 which is
associated to {1, 2, 1}.
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x1 x2 x3 ϕ(x1, x2, x3)
0 0 0 0.1
0 0 1 0.9
0 1 0 0.5
0 1 1 0.5
0 2 0 0.0
0 2 1 1
1 0 0 0.8
1 0 1 0.2
1 1 0 0.2
1 1 1 0.8
1 2 0 0.9
1 2 1 0.1

Figure 1: Representation of the potential ϕ(X1, X2, X3) as a mapping assigning a numeric
value to each configuration

It is possible to set a correspondence between indexes and configurations
based on the concept of weight (a.k.a. stride or step size). Let us suppose a
domain X := {X1, X2, . . . , XN}. Each variable Xi has a weight wi computed
as follows:

wi =

{
1 if i=N
|ΩXi+1 | · wi+1 otherwise

(1)

In the potential considered in Example 1 the values of weights are: w3 =
1, w2 = 2, w1 = 6. Therefore the most left variable is the one with highest
weight. Using weights the index of a certain configuration x := {x1, x2, . . . , xN}
can be computed with the following expression:

index(x) =

N∏
i=1

xi · wi (2)

Given a certain index k, its associated configuration is denoted x(k) and
satisfies that index(x(k)) = k. Given a certain index k, the value assigned to
each variable Xi can be computed using the following expression:

xi = (index//wi)%|ΩXi| (3)

where // denotes integer division and % the module of the division.

Example 2. Let us consider the potential ϕ(X1, X2, X3) given in Example 1,
with w1 = 6, w2 = 2 and w3 = 1. Then, the indexes of the configurations in the
domain can be computed as follows.
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index({0, 0, 0}) = 0 · 6 + 0 · 2 + 0 · 1 = 0

index({0, 0, 1}) = 0 · 6 + 0 · 2 + 1 · 1 = 1

index({0, 1, 0}) = 0 · 6 + 1 · 2 + 0 · 1 = 2

.................................................

index({1, 2, 1}) = 1 · 6 + 2 · 2 + 1 · 1 = 11

Note that the association between indexes and configurations requires an
order of the variables in the domain. Though any order is valid, we will con-
sider by default the order in which variables are written. E.g., in the potential
ϕ(X,Y, Z), the first variable would be X. In addition, here we consider the
first variable to have the highest weight. However, the opposite approach could
be also considered: the first variable has weight 1 whereas the last one has the
highest.

2.2. Representation for potentials
A potential is basically a multidimensional object with a dimension per vari-

able. Thus, a standard method for storing it is to flatten it into a single 1D-array
(1DA) in computer memory [1]. Thus, potential ϕ defined on a set of N vari-
ables, can be represented by the array Aϕ as follows.

Aϕ :=
{
ϕ(0, 0, . . . , 0), ϕ(0, 0, . . . , 1), . . . , ϕ(|ΩX1

| − 1, |ΩX2
| − 1, . . . , |ΩXN

| − 1)
}

(4)
The main advantage of the representation with 1DA consists in the fact

that the position in which each value is stored coincides with the index of the
corresponding configuration. This makes very efficient the access with indexes.
The size of a 1DA, denoted size(Aϕ), is the number of entries and is equal to
the number of configurations in the potential.

Example 3. The potential ϕ(X1, X2, X3) given in Example 1, can be represented
as the following 1DA with 12 entries shown in Figure 2

0 1 2 3 4 5 6 7 8 9 10 11

0.1 0.9 0.5 0.5 0.0 1.0 0.8 0.2 0.2 0.8 0.9 0.1

Figure 2: ϕ(X1, X2, X3) as a 1DA
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Some limitations of this representation are: the access to 1DA with configu-
rations would require a transformation into indexes using Eq. 2; the coincidence
between indexes and storage positions makes it necessary to store all values.
Therefore, the storage of repeated values in consecutive positions cannot be
avoided.

Probability trees (PTs) are an alternative structure that have been used for
storing and operating with potentials in PGMs [19, 20, 22], both accurately and
approximately. The Tϕ tree that represents a potential ϕ is a directed tree and
labelled with two types of nodes: internal nodes that represent variables and
leaf nodes representing the values of the potential. The internal nodes have
outgoing arcs (one for each state of the associated variable). The size of a T
tree, represented by size(T ) is defined as the number of nodes it contains.

Example 4. The same potential given in the previous example as a PT is
presented in Figure 3. This PT has a size of 21 nodes (12 leaves and 9 internal
nodes).

X1

X2

X3

0.1

0

0.9

1

0

X3

0.5

0

0.5

1

1

X3

0.0

0

1.0

1

2

0

X2

X3

0.8

0

0.2

1

0

X3

0.2

0

0.8

1

1

X3

0.9

0

0.1

1

2

1

index 0 1 2 3 4 5 6 7 8 9 10 11

Figure 3: ϕ(X1, X2, X3) as PT

With PTs, the most efficient way of access is via configuration: the tree
must be traversed from root to leaves selecting the corresponding values for
each variable until reaching a leaf node with its value. In addition, PTs can take
advantage of context-specific independencies [18] so that many identical values
can be grouped into a single one offering a compact storage. The operation of
collapsing identical values is called pruning.

Example 5. The potential in previous examples presents a context-specific in-
dependence that allows a reduction of its size: the value for X1 = 0, X2 = 1 is
0.5 regardless of the value of X3. If the pruning is done, the result is a PPT
(pruned PT) of size 19 shown in Figure 4.

However another patterns of repetitions can not be pruned. Let us consider
the tree presented in Figure 3. The values for indexes 7 and 8 are the same
and are consecutive, but they can not be pruned because they correspond to
configuration varying both in X2 and X3.
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1
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1
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0
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1

2

0
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Figure 4: ϕ(X1, X2, X3) as PPT

A variant of PTs, called binary trees (BPTs) [22] , can divide the domain of
each variable into two subsets of states. This would allow finer grain context
independencies to be exploited with respect to regular trees. For example, in
the PT (left part of Figure 5), the values 0.4 in c configuration (left subtree)
can not be pruned. However, with BPTs grouping states 0 and 2 of Xk would
allow the value 0.4 to be represented with a single leaf node (as showed in the
BPT of the right part of Figure 5). This reduces memory space for c context,
although it would require more nodes for the right subtree (c′ context). For this
reason, only PTs and PPTs are considered in this paper.

·

Xk

0.4

0

0.2

1

0.4

2

c

Xk

0.4

0

0.6

1

0

2

c′

·

Xk

0.4

0, 2

0.2

1

c

Xk

Xk

0.4

0

0.6

1

0, 1

0

2

c′

Figure 5: Binary tree representation

3. Memory requirements analysis

Even though the size of a representation gives an idea of the its complexity,
a more accurate analysis of its memory space requirements is needed: any rep-
resentation will consume additional elements (e.g., pointers, meta-information,
etc.) and each of them use different data types. For this analysis we will con-
sider a potential ϕ defined over a set of N variables X := {X1, X2, . . . XN}.
Additionally, the following notation related to the different memory sizes is
defined.
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• sf will be the memory size required for storing a float value.

• si is the memory size for storing an index denoting a concrete configuration
of ΩX.

• sr denotes the size of a reference to an object.

• sv represents the memory space required for storing the information about
a variable: name, cardinality and state names. As this depends of the
names of variables and states we will assume a fix value for all of them (in
fact, this memory space will be negligible respect to the whole memory
used for storing a potential). Moreover we can define a standard way of
coding variables with numerical identifiers and employ the same idea for
their states.

• ss denotes the memory size of the data structure used for storing infor-
mation (array, dictionary, set, etc).

As it was mentioned before, the representation by means of 1D-array (1DA)
has an important advantage: the values for configurations are stored consecu-
tively. That is, the value in position k corresponds to index k configuration.
This way it is not necessary to store information about indexes. Therefore,
its codification supposes an amount of memory given by the number of values
to store, the size of the array data structure and the memory required for its
variables:

Proposition 1 (Memory space for an array representing a potential). Let Aϕ

be a 1DA representing ϕ(X). Then the amount of required memory is given by
the following expression.

memory(Aϕ) = N · sv +m · sf + ss (5)

where m = |ΩX| is the number of entries in the array.

Example 6. From the previous examples, consider the potential ϕ(X1, X2, X3)
and its codification as a 1D-array given in Example 3. Then the estimation of
the memory size is:

memory(Aϕ) = 12sf + ss + 3sv (6)

The tree representation (PT and PPT) is usually less efficient in terms of
memory requirements as the full structure of the tree must be stored. Thus,
the amount of memory depends on the number of internal nodes, denoted nI ,
and the number of leaves nL. Note that it holds that nI + nL = size(T ).
Internal nodes store links (or references) to sub-trees (each for a state of the
corresponding variable). These links are stored into an array. Then, it is relevant
to consider the number of outgoing arcs: n

(j)
I denotes the total number of

internal nodes for variables with j states.
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Proposition 2 (Memory space for a tree representing a potential). Let Tϕ be
a tree representing ϕ(X). Then the amount of required memory is estimated as
follows.

memory(Tϕ) = N · sv + nL · sf +

K∑
j=2

n
(j)
I · (sv + ss + j · sr) (7)

where K = max{|ΩXi
| : Xi ∈ X|} is the maximal cardinality among the variables

in the potential.

In case of a non-pruned tree, the number of leaf nodes will be equal to the
number of configurations in the potential. As a consequence, the first terms in
Equations(5) and (7) are equal. It can then be seen that main increase of trees
is due to the data structures for storing links to subtrees and the repetition of
variables information.

Example 7. Let Tϕ be the PT from Example 4 (Figure 3) containing 7 internal
nodes for binary variables and 2 internal nodes for the ternary ones and 12
leaves. Similarly, let T ′

ϕ be the PPT from Example 5 (Figure 4) with 6 internal
nodes for binary variables, 2 internal nodes for ternary variables and 11 leaf
nodes. Then, their memory cost can be computed with the following expressions:

memory(Tϕ) = 3sv + 12sf + 7(sv + ss + 2sr) + 2(sv + ss + 3sr) (8)

memory(T ′
ϕ) = 3sv + 11sf + 6(sv + ss + 2sr) + 2(sv + ss + 3sr) (9)

In the previous example, the pruning operation has reduced the number of
internal nodes as well as the number of leaves, but anyway the cost is superior
to the size of the table representation. A large proportion of repeated values in
the potential is usually required for the tree use less space than an array.

For a concrete analysis, the following sizes for data types are assumed (the
real sizes can depend on the machine architecture; in fact, real sizes are not
relevant as long as the same sizes are used for all the comparisons):

• long: 4 bytes (for indexes).

• float: 8 bytes (for real values).

• pointer or reference: 8 bytes (memory addresses).

• variable: 50 bytes (this includes the space for storing name, state names,
etc). That is, sv = 50.

• the concrete value of ss will depend on the data structure employed:

– array and list data structure (sarr and slist respectively): 16 bytes.
– set data structure (sset): 32 bytes.
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– dictionary data structure (sdict): 64 bytes.

Using these sizes, the estimations of memory for the representations Aϕ, Tϕ
and T ′

ϕ are 262, 1000 and 910 respectively.

4. Value-based representations

4.1. Motivation
At this point, it is clear the necessity of having efficient mechanisms for

handling quantitative information for the tasks of representation, inference and
learning with PGMs. We have already considered that PTs allow to capture
some patterns of repetition in very specific situations. The underlying idea in
VBPs is to let the representation process be guided by the values themselves
and saving space from repetitions as much as possible. Therefore, the objectives
of VBPs are:

• being able to take advantage of all repetition patterns, regardless of the
order in which they appear. This is the capability to be analysed in
this paper in order to check how VBPs allow to reduce memory space
consumption.

• to facilitate the approximation task and the parallel management. This
capabilities will be explored in a future work but it is important to consider
these issues for reaching a good design.

4.2. Alternatives
The proposed alternatives can be classified in two groups depending on how

to make the queries. First, driven by values approaches are based on the use
of dictionaries in which the keys will be the values in the potentials. VDG and
VDI alternatives belong to this group. Secondly, driven by indices alternatives
where keys are indexes and not values. Into this group we present IDP and IDS
and both are based on the use a combination of two different arrays.

The particular features for all of them will be presented below. However, a
common capability is outlined here. It must be clear that these representations
require a search for managing the information. This can be exploited defining
a default value to return when the search fails. This default value can be
set to 0.0 (this is the proposed alternative taking into account it will be the
better approach for making inference operations) or fixed after analyzing the
values of the potential. In this case it would help to select as default value the
most repeated one (this alternative can reduce memory space but requires more
computation time).

10



5. VBPs description

5.1. VDG: value-driven with grains

Identical values in potentials will often appear in configurations with con-
secutive indexes. Consider for instance the potential given in Example 3, in
which the value 0.5 appear in positions 2 and 3. Similar situation happens with
value 0.2 in positions 7 and 8. As a consequence, a compact way of defining sets
of configurations associated to a the same value could be by means of intervals
(i.e., grains). Formally, a grain can be defined as follows.

Definition 1 (Grain). Let X be a set of variables and i and j indexes of valid
configurations on ΩX. A grain g(i, j) defines a sequence of consecutive indexes
i, i + 1, . . . j. Grains will be used for representing sequences of repeated values
in VBPs.

The VDG structure is based on the concept of grain: each possible value in
a given potential will have associated one or more grains defining all the indexes
for which the potential takes this value. More formally, a VDG can be defined
as follows.

Definition 2 (Value-driven with grains). Let ϕ be a potential defined over X,
then a value-driven with grains (VDG) representing ϕ is a dictionary assigning
to each value v ∈ ϕ a list of grains L such that for each grain g(i, j) ∈ L it holds
that ϕ(xk) = v for k = i, i+ 1, . . . , j.

Therefore, a VDG will store only non repeated values; for each of them it will
be necessary to store the corresponding grains of information. Grains will be
stored in lists. The link between values and grains is preserved with a dictionary
data structure containing pairs < value− list < grain >>.

Example 8. The potential ϕ(X1, X2, X3) used in previous examples and pre-
sented in Figure 1 will be represented as VDG as showed in Figure 6. The key
of each pair is the value (circle) and gives access to a list (rectangle of rounded
corner) of grains (pair of indexes storing a pattern of repetition). It can be seen
in Figure 6 that each value is stored only once. Some values appear only once
and the corresponding entry contains a single grain (is the case of 1) with 5 as
starting and ending index. The rest of values are repeated. For example, 0.1 is
the value corresponding to indexes 0 and 11. As this indexes are not consecutive
must be stored in two different grains. Values 0.2 and 0.5 appear in consecutive
indexes and their corresponding grains capture the sequences of repetitions.

An improvement consists in considering a value as default, an hence it is not
stored explicitly. The default value could be, for instance, the most common
value. However, for simplicity here we will always consider 0.0 as default.
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default value: 0.0

0.1 (0, 0) → (11, 11)

0.2 (7, 8)

0.5 (2, 3)

0.8 (6, 6) → (9, 9)

0.9 (1, 1) → (10, 10)

1 (5, 5)

Figure 6: ϕ(X1, X2, X3) as VDG

Assume that you want to access the value associated with index 6. This
access involves searching among the dictionary the value containing this index
in the paired list. Therefore, the dictionary is traversed using values (keys of
the entries). It can be noticed that this search can be made in a parallel way. If
the search does not produce any result then the default value is returned. This
is the case for index 4 corresponding to 0.0.

Proposition 3 (Memory space for a VDG representing a potential). Let V DGϕ

be the representation of ϕ(X). Let assume d represents the number of different
values in the potential (discarding the default value). The number of grains for
each value are denoted by g1 . . . gd. Then the amount of memory required is
estimated as follows.

memory(V DGϕ) = N · sv + sf + sdict + d · (sf + slist) +

d∑
j=1

2 · gj · si (10)

The terms in Equation (10) consider the sizes for: variables; storage for
default value; dictionary; values and lists; and grains with 2 indexes per grain.
The number of grains for each value will depend of the sequences of repetitions.
It will be lower as long as the sequences are longer. Therefore, the critical point
in this representation is the number of grains required, given by

∑d
j=1 gj .

Example 9. Let V DGϕ be the VDG from Example 8 with 6 different values to
store in the dictionary and 0.0 as default value. Therefore, the dictionary stores
6 entries. The sequences of repetitions requires 9 grains. Then, the memory
cost can be computed with the following expression:

memory(V DGϕ) = 3sv + sf + sdict + 6 · (sf + slist) + 9 · 2 · si (11)
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Using the concrete memory sizes described in Section 3 the complete amount
of memory is 438 bytes (sizes of 1AD, PT and PPT are 262, 1000 and 910
respectively).

5.2. VDI: value-driven with indexes

Even though the previous structure with grains is a compact representation
for potentials, it could encode unnecessary information when repeated values
are not in consecutive positions. This is the case of value 0.1 in Figure 6 which
has associated to 2 grains of length 1: (0, 0) and (11, 11). Instead, we could
consider to simply associate to this value the list of indexes {0, 11}. In doing
so, the required memory for indices (in this case) will be reduced. Having this
idea in mind, the following representation can be defined.

Definition 3 (Value-driven with indexes). Let ϕ be a potential defined over X,
then a value-driven with indexes (VDI) representing ϕ is a dictionary assigning
to each value v ∈ ϕ a list of indexes L such that ϕ(xi) = v for each i ∈ L.

As explained, the data structure for VDI is a dictionary of < value, list <
index >>. Non repeated values are keys and the entries contain list of indexes.
The idea behind this alternative consists of removing the duplication of indexes
for grains representing isolated values (1-value sequences).

Example 10. The potential ϕ(X1, X2, X3) used before and described in Figure 1
will be represented as VDI as showed in Figure 7. The key of each pair is the

default value: 0.0

0.1 0 → 11

0.2 7 → 8

0.5 2 → 3

0.8 6 → 9

0.9 1 → 10

1 5

Figure 7: ϕ(X1, X2, X3) as VDI

value (circle). Now each key gives access to a list (rectangle of rounded corner)
of indexes. As in VDG each value is stored only once (0.0 is the default value
and it is not stored). Now there are no repetitions of indexes in the lists.
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Proposition 4 (Memory space for a VDI representing a potential). Let V DIϕ
be the representation of ϕ(X). Let assume d represents the number of different
values in the potential (discarding the default value). The number of indexes
for each value are denoted by i1 . . . id. Then the amount of memory required is
estimated as follows.

memory(V DIϕ) = N · sv + sf + sdict + d · (sf + slist) +

d∑
j=1

ij · si (12)

The terms of the Equation 12 consider the sizes for: variables; default value;
dictionary; values and lists; and indices for non zero values. In this alternative,
the main saving comes from the reduction in the number of values to store, but
all the indexes (except those related to default value) must be stored.

Example 11. Let V DIϕ be the VDI from Example 10 with 6 different values
to store in the dictionary and 0.0 the default value. Therefore, the dictionary
stores 6 pairs and the lists contain 11 indexes. Then, the memory cost can be
computed with the following expression:

memory(V DIϕ) = 3sv + sf + sdict + 6 · (sf + slist) + 11 · si (13)

Using the concrete memory sizes described in Section 3 the complete amount of
memory is 410 bytes (a bit lower than VDG).

5.3. IDP: index-driven with pairs

The problem of using dictionaries is that accessing the value associated to a
given index could be inefficient: all its entries are traversed until the one with
target index is reached. For solving this, a potential can be represented with
two arrays: an array for the values and another one for the relations between
indexes and values. Thus, we can formally define the following VBP alternative
as follows.

Definition 4 (Index-driven with pairs). Let ϕ be a potential defined over X,
then a structure index-driven with pairs (IDP) representing ϕ is a pair of arrays:
V and L. The non-repeated values in ϕ are stored in V := {v0, v1, . . . , vd−1}.
The array L is defined as follows.

L := {(i, j) : ϕ(xi) = vj and i = 0, 1, . . . , |ΩX| − 1} (14)

That is, IDP is based on the following two elements. First, an array storing
the values (without repetitions, as before, and excluding 0.0 as default value).
Secondly, an array of pairs (index in potential - index in array of values). The
second index of the pair keeps the relation between indexes and values (this
relation was maintained using dictionaries in previous alternatives).
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default value: 0.0

0 1 2 3 4 5

0.1 0.2 0.5 0.8 0.9 1.0

(0, 0) (1, 4) (2, 2) (3, 2) (5, 5) (6, 3) (7, 1) (8, 1) (9, 3) (10, 4) (11, 0)

Figure 8: ϕ(X1, X2, X3) as IDP

Example 12. The representation as IDP of the potential ϕ(X1, X2, X3) pre-
sented in Figure 1 is showed in Figure 8. As explained before, this representation
is based on two coherent arrays. One of them stores non repeated values (except
the default value) and the second one store the correspondences between potential
indexes and the position of the corresponding value in the first array. Therefore
two indexes are needed for each potential index storing a non zero value. A
search for the value for a potential index requires a traversal through the array
of pairs, until finding the target index or reaching the end of the array. Lets
imagine the objective potential index is 6. Then the search will reach the pair
(6, 3) and the result will be the content of the position 3 in the array of values:
0.8. If the target is index 5 the search fails and then the default value would be
returned. In this case this search can pe parallelized as well.

Proposition 5 (Memory space for a IDP representing a potential). Let IDPϕ

be the structure representing ϕ(X). Let assume d represents the number of
different values in the potential (discarding the default value). The number of
indexes corresponding to non-default value is p. Then the amount of memory
is estimated as follows.

memory(IDPϕ) = N · sv + sf + 2 · sarr + d · (sf ) + 2 · si · p (15)

The terms in Equation 15 considers the sizes for: variables; default value;
both arrays; values; pairs of potential indexes and indexes of array value. This
representation tries to use simple structures and prioritize the direct search on
indices rather than on values.

Example 13. Let IDPϕ be the VBP from Example 12 with 6 different values to
store and 0.0 as default value. Therefore, the array of values stores 6 values and
the array of indexes contain 11 pairs. Then, the memory cost can be computed
with the following expression:

memory(IDPϕ) = 3sv + sf + 2 · sa + 6 · sf + 11 · 2 · si (16)

Using the concrete memory sizes described in Section 3 the complete amount of
memory is 326 bytes.
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5.4. IDS: index-driven with sets

The same underlying idea of VDIs is considered here: a set of indexes is
associated to each possible value in the potential. For avoiding the problem
of dictionaries in obtaining the value for a given index, we consider to use two
different arrays instead. Thus a new index-based alternative is defined here
below.

Definition 5 (Index-driven with sets). Let ϕ be a potential defined over X,
then a structure index-driven with sets (IDS) representing ϕ is a pair of arrays:
V and L. Non-repeated values in ϕ are stored in V := {v0, v1, . . . , vd−1}. Let
the array L be defined as {S0, . . . , Sd−1} where each element Si ∈ L is a set of
indexes satisfying ϕ(xk) = vi for all k ∈ Si.

Intuitively, this alternative uses two arrays, both of them with a dimension
equals to the number of different values discarding 0.0. The first one store sets
of indexes and the second the values. And there is an implicit relation between
them: the set of ith position contains the indexes for ith value.

Example 14. The representation as IDS of the potential ϕ(X1, X2, X3) pre-
sented in Figure 1 is showed in Figure 9. A search for the value for a potential

default value: 0.0

0.10, 11

0.27, 8

0.52, 3

0.86, 9

0.91, 10

15

Figure 9: ϕ(X1, X2, X3) as IDS

index requires a traversal through the array of sets, until finding a set containing
the target index or reaching the end of the array. Lets imagine the objective
potential index is 6. Then the search will reach the set (6, 9) (stored in position
3). Then result will be the content of the position 3 in the array of values:
0.8. If the target is index 5 the search fails and then the default value would be
returned. The search through sets can be made in parallel.
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Proposition 6 (Memory space for a IDS representing a potential). Let IDSϕ

be the structure representing ϕ(X). Let assume d represents the number of
different values in the potential (discarding the default value). The number of
indexes corresponding to non-default value is p. Then the amount of memory
is estimated as follows.

memory(IDSϕ) = N · sv + sf + 2 · sarr + d · (sset) + si · p (17)

The terms of the Equation (17) considers the sizes for: variables; default
value; arrays of sets and values; sets; and indexes. This representation also tries
to use simple structures and prioritize the direct search on indices (using set
operations) rather than on values.

Example 15. Let IDSϕ be the VBP from Example 14 with 6 different values
to store and 0.0 as default value. Therefore, the arrays of sets and values have 6
elements. Then, the memory cost can be computed with the following expression:

memory(IDSϕ) = 3sv + sf + 2 · sarr + 6 · sset + 6 · sf + 11 · si (18)

Using the concrete memory sizes described in Section 3 the complete amount of
memory is 474 bytes.

6. Empirical evaluation

The evaluation of VBPs memory sizes with respect to 1DA and trees (PTs
and PPTs) is performed by considering two sets of Bayesian networks. The first
set is taken from bnlearn ([26, 27]) and the second one from UAI competitions
([28, 29]). The quantitative information of these models is represented with the
structures considered in the paper in order to compare their properties. The
representations compared in the experiments are:

• 1DA: unidimensional arrays.

• PT: probability trees.

• PPT: probability trees with exact prune.

• VDG: value-driven search with dictionary and lists of grains.

• VDI: value.-driven search with dictionary and lists of indexes.

• IDP: index-driven search with arrays of values and indexes.

• IDS: index-driven search with array of sets of indexes and array of values.
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network nodes arcs min. st. avg. st. max. st. parameters
cancer 5 4 2 2 2 20

asia 8 8 2 2 2 36
survey 6 6 2 2.33 2 37
sachs 11 17 3 3 3 267
child 20 25 2 3 6 344
alarm 37 46 2 2.83 4 752

win95pts 76 112 2 2 2 1148
insurance 27 52 2 3.29 5 1419

hepar2 70 123 2 2.31 4 2139
andes 223 338 2 2 2 2314

hailfinder 56 66 2 3.98 11 3741
pigs 441 592 3 3 3 8427

water 32 66 3 3.625 4 13484
munin1 186 273 2 5.33 21 19226

link 724 1125 2 2.53 4 20502
munin2 1003 1244 2 5.36 21 83920
munin3 1041 1306 2 5.38 21 85615

pathfinder 109 195 2 4.11 63 97851
munin4 1038 1388 2 5.44 21 97943
munin 1041 1397 2 5.43 21 98423
barley 48 84 2 8.77 67 130180

diabetes 413 602 3 11.34 21 461069
mildew 35 46 3 17.6 100 547158

Table 1: bnlearn Bayesian networks features

6.1. bnlearn networks
Some basic information about the Bayesian networks analyzed is included

in Table 1: name; number of nodes; number of arcs; minimum, average and
maximum number of states; and number of parameters. Networks are ordered
according to the number of parameters (values to store within potentials).

The results for these networks are included in Table 2, which contains the
ratios in the memory requirements for representing the quantitative information.
That is, the memory estimation for each representation divided by the memory
size required for 1DA. Therefore only ratios r < 1 indicates savings in memory
space.

Some comments about the results for bnlearn networks are:

• PTs and PPTs always lead to ratios over 1 and very similar, except for
win95pts: from 5.125 to 3.455 respectively (there are several potentials
with repeated values where the prune operation substantially reduces the
number of leaf nodes).

• in almost all networks the best representation is obtained with IDP. In
the networks with a number of parameters under 8427 (pigs) the ratios
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network PT PPT VDG VDI IDP IDS
cancer 2.494 2.494 1.987 1.883 1.364 2.091

asia 2.613 2.546 1.768 1.679 1.274 1.798
survey 2.84 2.84 2.125 1.989 1.404 2.357
sachs 3.918 3.836 2.292 2.084 1.381 2.829
child 3.423 3.391 1.843 2.087 1.308 1.973
alarm 3.721 3.665 1.407 1.554 1.202 1.449

win95pts 5.125 3.455 1.213 1.219 1.094 1.288
insurance 4.299 4.277 1.511 1.279 1.095 1.634

hepar2 4.431 4.421 2.711 2.361 1.589 3.417
andes 4.127 4.036 1.495 1.336 1.183 1.391

hailfinder 4.403 4.381 1.452 1.141 1.099 1.432
pigs 3.645 3.654 1.113 1.038 0.937 1.073

water 4.908 4.906 1.274 1.046 0.766 1.536
munin1 3.634 3.617 1.11 1.308 0.729 1.275

link 4.225 4.17 0.808 0.73 0.695 0.697
muni2 3.416 3.406 1.259 1.085 0.791 1.484

munin3 3.383 3.378 1.283 1.108 0.8 1.519
pathfinder 5.295 4.709 0.514 0.369 0.595 0.409

munin4 3.529 3.519 1.118 1.016 0.76 1.384
munin 3.545 3.503 1.173 1.003 0.757 1.363
barley 3.305 3.289 1.599 1.351 1.283 1.912

diabetes 2.671 2.671 0.365 0.251 0.289 0.323
mildew 2.124 2.124 0.151 0.117 0.098 0.171

Table 2: Ratios respect to 1DA for bnlearn networks

are bigger than 1 and ranging from 1.364 to 0.937. With higher number
of parameters ratios are clearly under 1 except for barley network.

• The best ratios are those of diabetes and mildew. In both networks there
are several potentials with a high number of repeated values. In the case
of diabetes there are 25 variables with 7056 parameters but a reduced
number of different values (44). The advantage of VDI representation is
due to the number of indexes to store: 2040: IDP representation requires
storing indexes as pairs and VDI as single values. In mildew there are
several potentials with a high number of repeated values (39040 possible
values but only 1756 different ones; 201300 parameters but only 4508
different; and 280000 parameters and 5023 different. In all these variables
repeated values can not be pruned when using trees).

• VDI is the best representation for pathfinder and diabetes. In both
cases there are a reduced number of different values respect to the com-
plete number of parameters. In pathfinder there is a variable with 8064
parameters with 29 different values. As explained before for mildew the
number of indexes to store is high (3520) and this explains the advantage
of VDI alternative.
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The difference between small and large networks is presented in Figure 10.
The left part represents the behaviour for networks with a number of parameters
up to 3741 (networks from cancer to hailfinder). The right part groups the
results for the rest of them.
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Figure 10: Graphical representation for bnlearn results

6.2. UAI competition networks
Table 3 gathers some basic information about the set of networks selected

(the same information presented for bnlearn networks). The results for these
networks are presented in Table 4.

The following conclusions can be outlined from these results:

• ratios for PTs and PPTs are always over 2.5, except for BN_27. For this
network there is an important difference between PT (5.880) and PPT
(0.045). In fact, in this network PPT is the best representation, although
similar results are obtained for VDG. This network has 3025 nodes and
the potentials for 1005 of them 3645 possible values but only 1. This leads
to a very efficient representation with PPT (a single leaf node is enough)
and VDG (a single grain covers all the range of indexes).

• IDP is the best representation for most of the networks, with ratios near
to 1. The ratio is much more reduced for the last two networks, those
with a very high number of parameters (more than 4 millions). In these
two networks there are 303 potentials with 9464 parameters with two
values: 0 (represented implicitly as default value) and 1. The sequences
of repetitions can not be collapsed by prune operation and therefore PPT
and PT offer similar ratios. In these potentials IDS representation is the
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network nodes arcs min. st. avg. st. max. st. parameters
50-12-5 144 264 2 2 2 1058
50-14-5 196 364 2 2 2 1458
50-15-5 225 420 2 2 2 1682
50-16-5 256 480 2 2 2 1922
50-17-5 289 544 2 2 2 2178
50-18-5 324 612 2 2 2 2450
50-19-5 361 684 2 2 2 2738
90-20-5 400 760 2 2 2 3042
75-21-5 441 840 2 2 2 3362
75-22-5 484 924 2 2 2 3698
90-23-5 529 1012 2 2 2 4050
75-24-5 576 1104 2 2 2 4418
75-25-5 625 1200 2 2 2 4802
75-26-5 676 1300 2 2 2 5202
BN_126 512 768 2 2 2 5376
90-30-5 900 1740 2 2 2 6962
90-34-5 1156 2244 2 2 2 8978
90-38-5 1444 2812 2 2 2 11250
90-42-5 1764 3444 2 2 2 13778
90-46-5 2126 4140 2 2 2 16562
90-50-5 2500 4900 2 2 2 19602
BN_16 2127 3595 2 2.05 6 33659
BN_27 3025 7040 3 6 10 3698565
BN_22 2425 4239 2 18.743 91 4073904
BN_20 2843 5272 2 18.92 91 5009364

Table 3: UAI competition Bayesian networks features

most efficient. The average ratio presents a better result for IDP however,
due to the existence of another 303 potentials with 910 parameters and
908 different values. In these potentials IDS representation requires much
more space than IDP.

• all the alternative representations offer a competitive alternative respect
to PTs and PPTs.

Figure 11 shows the summary view of the behaviour for small (from 50-12-5
to BN_16) and large ones, where for the alternative representations use to be
under 1.

7. Conclusion

The examples of Bayesian networks considered in the experimental work
show how, in all cases, PTs lead to a memory usage much higher than 1DAs.
However, this does not make this representation useless. The true capacity
of PTs is related to their efficiency for performing the operations required for
inference tasks and its capability for being approximated.
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network PT PPT VDG VDI IDP IDS
50-12-5 3.17 3.17 1.649 1.563 1.207 1.743
50-14-5 3.185 3.185 1.619 1.535 1.194 1.701
50-15-5 3.19 3.19 1.593 1.512 1.183 1.664
50-16-5 3.195 3.195 1.603 1.519 1.186 1.677
50-17-5 3.199 3.199 1.611 1.527 1.19 1.691
50-18-5 3.203 3.203 1.614 1.53 1.191 1.695
50-19-5 3.207 3.207 1.608 1.524 1.188 1.687
90-20-5 3.21 3.21 1.266 1.221 1.044 1.21
75-21-5 3.213 3.213 1.38 1.322 1.092 1.363
75-22-5 3.215 3.215 1.389 1.33 1.095 1.376
90-23-5 3.218 3.218 1.269 1.223 1.044 1.205
75-24-5 3.22 3.22 1.37 1.312 1.087 1.349
75-25-5 3.222 3.222 1.404 1.342 1.101 1.397
75-26-5 3.224 3.224 1.384 1.325 1.093 1.37
BN_126 4.166 4.073 1.232 1.182 1.016 1.182
90-30-5 3.32 3.23 1.277 1.228 1.047 1.216
90-34-5 3.234 3.234 1.252 1.207 1.036 1.182
90-38-5 3.328 3.238 1.257 1.211 1.038 1.189
90-42-5 3.241 3.241 1.253 1.315 1.037 1.183
90-46-5 3.243 3.243 1.257 1.211 1.039 1.19
90-50-5 3.245 3.245 1.253 1.206 1.036 1.183
BN_16 4.147 4.137 1.671 1.519 1.167 1.81
BN_27 5.88 0.045 0.06 0.541 1.011 0.555
BN_22 2.56 2.47 0.328 0.275 0.195 0.407
BN_20 2.549 2.451 0.34 0.296 0.207 0.44

Table 4: Ratios respect to 1DA for UAI competition networks

The approximation operation assumes loss of information. Intuitively, the
idea is to group nearby values and replace them with their average (or some
other measure), so that we are actually expanding the repetition patterns and,
therefore, reducing the number of values to be stored. With this operation
any algorithm that involves the use of PTs will become approximate and will
ultimately offer non-exact solutions. In very complex problems it is always
better to have at least one approximate solution (see [21, 22, 23, 24]).

The set of alternative representations offers compact representations with
memory sizes below PTs and PPTs. Moreover, these alternatives can be ap-
proximated as well with an efficient method: join entries with similar values.
Therefore, one of the additional benefits of PTs and PPTs is preserved with
VBPs.

The next step with VBPs, and mainly with IDP will consist of defining
efficient algorithms for the basic operations required for inference: combina-
tion, marginalization and restriction. The software used in this paper is im-
plemented with Scala programming language. The functional programming
paradigm (combined with object orientation) offered by Scala can be exploited
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Figure 11: Graphical representation for uai results

for getting well defined operations easily converted into parallel ones on multi-
core CPUs when possible. Some of these benefits are investigated in [30].
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